BEBERAPA GENERALISASI TEOREMA TITIK TETAP CARISTI UNTUK JARAK-ω

Authors

  • Ahmad Khairul Umam Universitas Billfath
  • Pukky Tetralian Bantining Ngastiti Universitas Billfath
  • Ahmad Isro'il Universitas Billfath

DOI:

https://doi.org/10.55719/mv.v6i2.1280

Keywords:

Caristi's Fixed Point, ω-Distance, fungsi nondecreasing

Abstract

Caristi’s fixed point theorem is generalization of Banach’s fixed point. Banach’s fixed point theorem guarantee existence and uniqueness fixed point in complete space and contractive function. Caristi’s fixed point uses function f:X→X and lower semicontinuous function ψ:X→[0,∞). In this paper, we discuss some generalization of Caristi’s fixed point theorem. We also use ω-distance as distance function.  We discuss function T:X→2^X where 2^X are collection of all nonempty subsets of X. And then we use function c:[0,∞)→(0,∞) that is nondecreasing function.

Downloads

Download data is not yet available.

References

E. Kreyszig, “Introductory Functional Analysis with Applications,” John Wiley & Sons, 1978.

S. Oltra and O. Valero, “Banach’s Fixed Point Theorem for Partial Metric Spaces,” Rend. Istit. Mat. Univ. Trieste, vol. 36, pp. 17-26, 2004.

A. Khan, M. Sarwar, F. Khan, H. Alsamir, and H. A. Hammad, “Fixed Point Results for Multivalued Mappings with Applications,” Journal of Function Spaces, vol. 2021, pp. 1-10, 2021.

M. Muslikh dan S. Fitri, “Fungsi Bernilai Himpunan,” UB Press, 2022.

M. Muslikh, “Analisis Real,” UB Press, 2012.

A. K. Umam, “Buku Ajar Mata Kuliah Analisis Real,” YPSIM Banten, 2021.

H. Gunawan, “Pengantar Analisis Real,” Penerbit ITB, 2016.

I. S. Rohma dan A. K. Umam, “Eksistensi dan Ketunggalan Titik Tetap Bersama di Ruang Metrik Cone (Kerucut) untuk Pasangan Fungsi Ekspansif,” JMS: Jurnal Matematika dan Sains, vol. 3, no. 1, pp. 39-44, 2023.

W. Rudin, “Principles of Mathematical Analysis 3rd Edition,” McGraw-Hill, Inc., 1976.

R. G. Bartle and D. R. Sherbert, “Introduction to Real Analysis,” John Wiley & Sons, Inc., 2011.

F. V. Kuhlmann, K. Kuhlmann, and M. Paulsen, “The Caristi-Kirk Fixed Point Theorem from The Point of View of Ball Spaces,” J. Fixed Point Theory Appl.., vol. 20, no. 107, pp. 1-9, 2018.

A. Latif, “Generalized Caristi’s Fixed Point Theorems,” Fixed Point Theory and Applications, vol. 2009, no. 170140, pp. 1-7, 2009.

S. Takashi and Y. Hiroyuki, “Introduction to Mathematical Science Model.” Baifukan, 2010.

J. Caristi, “Fixed Point Theorems for Mappings Satisfying Inwardness Conditions,” Transactions of The American Mathematical Society, vol. 215, pp. 241–251, 1976.

O. Kada, T. Suzuki, and W. Takahashi, “Nonconvex Minimization Theorems and Fixed Point Theorems in Complete Metric Spaces,” Mathematica Japonica, vol. 44, no. 2, pp. 381–391, 1996.

Downloads

Published

2024-09-30

How to Cite

Ahmad Khairul Umam, Pukky Tetralian Bantining Ngastiti, & Ahmad Isro'il. (2024). BEBERAPA GENERALISASI TEOREMA TITIK TETAP CARISTI UNTUK JARAK-ω. MathVision : Jurnal Matematika, 6(2), 57–61. https://doi.org/10.55719/mv.v6i2.1280