OPTIMAL CONTROL FOR COFFEE BERRY DISEASE MODEL WITH CARRIER VECTOR OFCOLLETOTRICHUM KAHAWAE
Optimal Control for Coffee Berry Disease Model with Carrier Vector of C. kahawae
DOI:
https://doi.org/10.55719/mv.v6i2.1396Keywords:
Optimal Control, Coffee Berry Disease, Epidemic ModelAbstract
Coffee Berry Disease (CBD) is a fungal disease of coffee caused by Colletotrichum kahawae, resulting in significant losses of both quality and quantity of the coffee produced. Optimal control is applied to CBD models where the interaction between carrier vectors and pathogenic fungi is considered. Control strategies include the use of fungicides and biocontrol agents. The optimal control problem is formulated to minimise the cost of implementing the interventions, along with the numbers of infected coffee, pathogenic fungi, and their carrier vectors. The existence of optimal control and the necessary conditions for optimality are solved using Pontryagin's Minimum Principle. The cost-effectiveness of implementing several control strategies was examined using the Incremental Cost-Effectiveness Ratio (ICER). Numerical simulations demonstrate the effectiveness of optimal control in mitigating CBD.
Downloads
References
A. Calle, J. Santos, and R. Rivas, “Coffee berry disease: A review,” Plant Pathology, vol. 62(3), pp. 568-576, 2013.
P. Fichet, B. Bertrand, and E. De Langre, “Economic impacts of coffee berry disease in major coffee-producing regions,” Agricultural Economics, vol. 47(2), pp. 223-235, 2016.
E. Griffiths, J. N. Gibbs, and J. M. Waller, “Control of coffee berry disease,” Annals of Applied Biology, vol. 67, pp. 45–74, 1991.
Z. Wubshet and D. Merga, “Biology, Dispersal and Management of Coffee Berry Disease: A Review,” Journal of Biology, Agriculture and Healthcare, vol. 10(20), pp. 14-25, 2020.
S. M. Malaka, G. O. Alwora, and S. N. Bonuke, “Efficacy of Two New Fungicides Against Colletotrichum kahawae Infecting Coffee in Kenya,” Current Agriculture Research Journal, vol. 9(2), pp. 83-90, 2021.
J. Chowdhury, F. A. Basir, Y. Takeuchi, M. Ghosh, and P. K. Roy, “A mathematical model for pest management in Jatropha curcas with integrated pesticides - An optimal control approach,” Ecological Complexity, vol. 37, pp. 24-31, 2019.
H. N. Msenya, S. Runo, D. W. Miano, M. W. Gikungu, E. K. Gichuru, C. Wagikondi, K. Kathurima, and G. O. Alworah, “The Potential of Fungi as Bio-Control Agents in Managing Colletotrichum Kahawae in Kenya,” Current Agriculture Research Journal, vol. 9(3), pp. 171-178, 2021.
J. Simmonds and R. Nunez, “Integrated pest management for coffee berry disease,” Journal of Pest Science, vol. 93(1), pp. 45-60, 2020.
K. Kirk and A. Peters, “Optimal control theory and applications in agriculture,” Journal of Agricultural Systems, vol. 172, pp. 1-15, 2019.
Y. F. Fotso, S. Touzeau, B. Tsanou, S. Bowong, and F. Grognard, “Modelling and optimal strategy to control coffee berry borer,” Mathematical Methods in the Applied Sciences. vol. 44(18), pp. 14569-14592, 2021.
D. S. Mandal, A. Chekroun, S. Samanta, and J. Chattopadhyay, “A mathematical study of a crop-pest–natural enemy model with Z-type control,” Mathematics and Computers in Simulation, vol. 187, pp. 468-488, 2021.
C. A. Trujillo-Salazar, G. Olivar-Tost, and D. M. Sotelo-Castelblanco, “Mathematical Model for the Biological Control of the Coffee Berry Borer Hypothenemus hampei through Ant Predation,” Insects, vol. 14(8), 2023.
C. Djuikem, F. Grognard, R. T. Wafo, S. Touzeau, and S. Bowong, “Modelling coffee leaf rust dynamics to control its spread,” Mathematical Modelling of Natural Phenomena, vol. 16, 2021.
C. Djuikem, A. G. Yabo, F. Grognard, and S. Touzeau, “Mathematical modelling and optimal control of the seasonal coffee leaf rust propagation,” IFAC PapersOnline, vol. 54(5), pp. 193-198, 2021.
A. S. Melese, O. D. Makinde, and L. L. Obsu, “Mathematical modelling and analysis of coffee berry disease dynamics on a coffee farm,” Mathematical Biosciences and Engineering, vol. 19(7), pp. 7349–7373, 2022.
Y. F. Fotso, S. Touzeau, B. Tsanou, F. Grognard, and S. Bowong, “Mathematical modelling of a pest in an age-structured crop model: The coffee berry borer case,” Applied Mathematical Modelling, vol. 110, pp. 193-206, 2022.
M. M. Campanha, R. H. S. Santos, G. B. D. Freitas, H. E. P. Martinez, C. Jaramillo-Botero, and S. L. Garcia, “Comparative analysis of litter and soil characteristics under coffee (Coffea arabica L.) crop in agroforestry and monoculture systems,” Revista A´rvore, vol. 31, pp. 805–812, 2007.
H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, and A. Zinober, “Dengue disease, basic reproduction number and control,” International Journal Computer Mathematics. vol. 89 (3), pp. 334-346, 2012.
B. J. Schroers, “Ordinary differential equations: a practical guide,” Cambridge University Press, New York, 2011.
W. H. Fleming and R. W. Rishel, “Deterministic and stochastic optimal control,” Springer, New York, 2012.
L. Pontryagin, V. Boltyanskii, R. Gramkrelidze, and E. Mischenko, “The Mathematical Theory of Optimal Processes,” John Wiley & Sons, New York-London, 1962.
S. Lenhart, and J. T. Workman, “Optimal control applied to biological models,” Chapman and Hall/CRC, New York, 2007.
G. G. Mwanga, H. Haario, and V. Capasso, “Optimal control problems of epidemic systems with parameter uncertainties: Application to a malaria two-age classes transmission model with asymptomatic carriers,” Mathematical Biosciences, vol. 261, pp. 1-12, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sailah Ar Rizka Rizka, Nadia Kholifia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Penulis yang mempublikasikan jurnalnya di MathVision harus setuju dengan:
- Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang secara simultan dilisensikan di bawah Lisensi Creative Commons yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepenulisan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (mis., Dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan