CLUSTERING DATA KENAIKAN KELAS SISWA MADRASAH TSANAWIYAH (MTs) MENGGUNAKAN METODE FUZZY C-MEANS ( STUDI KASUS MTs PLUS AL AMIN BANJAREJO )

Authors

  • Joko Nurkholis Joko Nurkholis
  • Kresna Oktafianto Universitas PGRI Ronggolawe
  • Hamim Thohari SMK Negeri 1 Tuban

DOI:

https://doi.org/10.55719/mv.v4i1.319

Keywords:

Data kenaikan kelas, Fuzzy C-Means, Kelas Unggul, MTs (Madrasah Tsanawiyah)

Abstract

Grade promotion is an annual routine activity for a school at the elementary, junior high and high school levels. This activity becomes a problem when the class increase will be grouped into two classes. The process of selecting students to fill classes with superior categories and ordinary classes by looking at the number of student competency scores. This study, it is used to explore student competencies which are arranged in report cards when grades increase. With the Fuzzy C-Means algorithm, various competencies of prospective students can be grouped in detail according to the competencies that students have. The results of this clustering will be the basis for placing prospective students into superior or ordinary classes. By forming a community of superior classes and ordinary classes, there is a new climate for learning strategies and methods that are expected to make the learning process comfortable, fun and competitive. Cluster evaluation is carried out with the proximity of students' competencies in a cluster which shows the difference in quality between the superior class and ordinary class clusters. Cluster evaluation based on PCI index (Partition Coefficient) = 0.7675966 (Strong).

Downloads

Download data is not yet available.

References

1] Departemen Pendidikan Nasional (2006), Panduan Penyusunan Laporan Hasil Belajar Peserta Didik Sekolah Menengah Kejuruan (SMK), Direktorat Jendral Pendidikan Sekolah Menengah Kejuruan, Jakarta 2006.
[2] Adodo, S.O & Agbaweya, J.O. (2011).Effect of homogenous and heterogeneous ability grouping class teaching on student’s interest, attitude and achievement in integrated science. International Journal of Psychology and Counselling, 3(3), 48-54.
[3] Han, J., Kamber, M., dan Pei, J. 2012. Data Mining Concepts and Techniques Third Edition. United States of America: Elsevier.
[4] Mashfuufah, S., dan Istiawan, D. 2018. Penerapan Partition Entropy Index, Partition Coefficient Index dan Xie Beni Index untuk Penentuan Jumlah Klaster Optimal pada Algoritma Fuzzy C-Means dalam Pemetaan Tingkat Kesejahteraan Penduduk Jawa Tengah. The 7th University Research Colloqium, 51–60.
[5] Yasid, A. 2014. Implementasi Automatic Clustering Menggunakan Differential Evolution dan CS Measure untuk Analisis Data Kemahasiswaan. Jurnal Ilmiah NERO, 1(2), 47–52.
[6] Wijaya, A. K.. Implementasi Data Mining dengan Algoritma Fuzzy C - Means (Studi Kasus Penjualan di UD Subur Baru); 2014. p.1–8.
[7] Megawati, N., Mukid, M. A., & Rahmawati, R. Segmentasi Pasar Pada Pusat Perbelanjaan Menggunakan Fuzzy C-Means (Studi Kasus : Rita Pasaraya Cilacap). Gaussian, 2. 2013.
[8] Mingoti, S. A., & Lima, J. O. Comparing SOM Neural Network with Fuzzy C- Means , K -Means and Traditional Hierarchical Clustering Algorithms. European Journal of Operational Research, 174; 2006.
[9] Prasetyo, E, (2014), Data Mining Mengolah Data Menjadi Informasi Menggunakan MATLAB, Edisi 1, Penerbit ANDI offset, Yogyakarta.
[10] Fahriya, K., Yustanti, W. (2021), Optimalisasi Jumlah Klaster Uang Kuliyah Tunggal pada Data Sosial Ekonomi Mahasiswa.

Published

2022-03-31

How to Cite

Nurkholis, J., Oktafianto, K., & Thohari, H. (2022). CLUSTERING DATA KENAIKAN KELAS SISWA MADRASAH TSANAWIYAH (MTs) MENGGUNAKAN METODE FUZZY C-MEANS ( STUDI KASUS MTs PLUS AL AMIN BANJAREJO ). MathVision : Jurnal Matematika, 4(1), 11–18. https://doi.org/10.55719/mv.v4i1.319

Issue

Section

Articles