ANALISIS PERAMALAN BEBAN LISTRIK JANGKA PENDEK MENGGUNAKAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM
Studi Kasus : PT. PLN (Persero) Area Pengaturan Distribusi Jawa Timur
Keywords:
ANFIS, Peramalan beban listrik, inference TSKAbstract
Prediksi atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang akan diproduksi guna mencegah terjadinya beban berlebih yang dapat menyebabkan kerusakan pada sistem trafo atau kekurangan beban listrik yang mengakibatkan krisis energi listrik pada konsumen. Oleh karena itu, dibutuhkan suatu metode alternatif untuk memprediksi beban listrik jangka pendek, salah satunya yaitu metode Adaptive Neuro Fuzzy Inference System pada penelitian ini. Data diperoleh dari PT. PLN (Persero) APD Jawa Timur yang berisi data beban listrik per setengah jam dari bulan februari sampai september tahun 2018 yang digunakan sebagai data aktual. Data kemudian dilatih dengan menggunakan metode ANFIS dan didapatkan hasil peralaman bulan september 2018. Data uji coba tanggal 1 s/d 28 september tergolong memiliki tingkat kesalahan yang rendah yaitu MAPE menunjukkan hasil 7,926%. Nilai error terbesar terjadi pada tanggal 18 september yaitu sebesar 20,51% sedangkan nilai error terkecil terjadi pada tanggal 16 september yaitu sebesar 1,117%.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Penulis yang mempublikasikan jurnalnya di MathVision harus setuju dengan:
- Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang secara simultan dilisensikan di bawah Lisensi Creative Commons yang memungkinkan orang lain untuk berbagi karya dengan pengakuan kepenulisan karya dan publikasi awal dalam jurnal ini.
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (mis., Dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan